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We present a simple, transferable, efficient, and effective algorithmic enhancement designed to improve the
accuracy of all multicomponent lattice Boltzmann methods when applied to the simulation in the continuum
approximation of fluid mechanics. By applying a collision parameter �kinematic viscosity� perturbation to
reduce velocity gradients in the interfacial region, a kinematic condition is effectively enforced. Matters
relating to a variation in the collision parameter are briefly discussed.
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I. INTRODUCTION

Complex, multicomponent fluid flow is of widespread sig-
nificance. Often, however, computational demands make its
numerical calculation prohibitively expensive. The advent of
multicomponent lattice Boltzmann �MCLB� simulation �1�
has improved matters and a variety of flows, spanning a
range of length and time scales, are currently modeled using
MCLB. The simple and robust innovations reported here are
relevant to all MCLB variants when applied to the con-
tinuum regime, with completely immiscible fluids. This short
paper addresses the representation of an interfacial kinematic
condition �KC� of mutual fluid impenetrability �2�; we shall
describe in Sec. II the most appropriate MCLB model for
such an application, then, in Sec. III, show how it may be
simply and effectively modified explicitly to contain a KC in
a manner readily transferable to other MCLBs; finally, in
Sec. IV we shall present and discuss results.

Interfacial boundary conditions are treated in all MCLB
as a constraint coupling the dynamics of a single component
lattice Boltzmann �lB� fluid to those of an order parameter
�3� or a phase field �4,5�. Thereafter, the principal MCLB
methods are distinguished by the detailed way in which a
fluid-fluid interface is imposed �1,4,6�, with different algo-
rithms favoring different applications. For example, in me-
soscale problems where the kinematics of phase separation
feature the free-energy method �6,3�, based as it is upon
Cahn-Hilliard theory, is the appropriate choice of MCLB.
Alternatively, flows like that in Ref. �9�, which are formally
characterized as complex, incompressible, multicomponent
flows, address the continuum fluid approximation. In the lat-
ter regime fluid-fluid interfaces are unstructured and appear
as boundary conditions on ��12 where �1 and �2 are sepa-
rate Navier-Stokes domains. Most MCLB variants have, at
some time, been applied in this approximation but physical
accuracy, efficiency, and simplicity favor a MCLB pioneered
by Gunstensen et al. �8� and modified by Lishchuk �4� and
Halliday et al. �10,11,5� for the continuum regime.

The MCLB method of Ref. �5� is a synthesis of the work
of Lishchuk et al. �4�, d’Ortona et al. �12�, and Latva-Kokko
and Rothman �13�. It has narrow interfaces with a thickness
independent of the computational mesh resolution �but see
below�, an independently adjustable interfacial tension which
may be large, predictable phase-field dynamics �5�, and it
also facilitates simulation at a low capillary and drop Rey-
nolds number �5�. Furthermore, the MCLB method of Ref.
�5� is based on the notion of dynamic, stress, boundary con-

ditions �2� enforced over the interface between immiscible
fluids �4� but neither it nor its progenitors take explicit ac-
count of any form of KC.

The present work goes some way to addressing the prob-
lems of conflicting length scales, unavoidable in MCLB,
given that any practical �stable� interface must be diffuse on
some characteristic, finite distance. We address this issue of
interface scale and locatability implicitly, by devising a
simple KC algorithm, which acts over a very limited distance
on either side of a defined, subgrid interface center, which, in
turn, the KC implicitly serves to define.

II. BACKGROUND

The MCLB method used in this work is that of Ref. �5�. It
builds from a single component, single relaxation time lB
variant designated the lattice Bhatnagar-Gross-Krook
�LBGK� model �14�. LBGK has an evolution �collision, sub-
sequent propagation� equation for a discretized single-
particle momentum distribution function f i �1� to which a
source term �i�r� may be added as follows:

f i�r + ci,t + 1� = f i�r,t� − ��f i�r,t� − f i
�0���,�u�� + �i�r� ,

�1�

to impress a body force in the lattice fluid. Below we identify
symbols and discuss how source term �i inserts a particular
body force of limited range to produce an interfacial pressure
step in the fluid. From the single-particle momentum distri-
bution function f i governed by Eq. �1� isothermal, hydrody-
namic observables � and u emerge �1� as follows:

��r,t� � �
i

f i�r,t�, u�r,t� �
1

��r,t��i

f i�r,t�ci. �2�

For a constant �i, Chapman-Enskog analysis �1� gives
lB’s characteristic, weakly compressible form of the incom-
pressible Navier-Stokes equation, now with a constant body
force. For example, the choice

�i = tp
1

k2
F · ci �3�

is used to insert a uniform body force in the macroscopic
dynamics, which, to o�u2� �16� is
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�

�t
�u� +

�

�x�

�u�u� = −
�

�x�

cs
2� +

�

�x�

„2�	���S��… + F�.

�4�

In the penultimate term of this equation the kinematic vis-
cosity function 	��� appears to the right of the differentia-
tions and may be factored only for �=constant; this is akin
to the situation in physical fluids �2�. We shall return to this
point. For the D2Q9 model 	���� 1

6
� 2

� −1�. In Eq. �4� S�� is
the strain rate tensor; in Eq. �3� the link weights tp are de-
fined in Table I. The microscopic source term �i of Eq. �1�,
and the macroscopic force are related by

F = k2�
i

�ici. �5�

The value of constant k2
����itpci�ci� used in Eqs. �3� and
�5� is lattice dependent; k2=1/3 for the D2Q9 model.

For present purposes, the body force needs to contain spa-
tial variation �10� which necessitates spatial variation in
�i�r�. This obstructs the emergence of Eq. �4�. A solution to
this problem, given by Guo et al., requires �i� a more com-
plicated relationship between F�r� and �i�r� than that of Eq.
�5� and �ii� a redefinition of u. Before stating a modified
relationship in Eqs. �11� and �12� below, we consider the
form of fluid interface force, which �i should generate, and
where this force should be applied.

Fluid-fluid interface dynamics are applied in regions of
the lattice where two immiscible fluids interact. The two flu-
ids concerned we designate red and blue. The momentum
distribution function f i is now specified for red and blue
fluids individually as follows:

f i�r,t� = Ri�r,t� + Bi�r,t� , �6�

with the nodal density now also defined for red and blue
fluids individually as follows:

R�r,t� � �
i

Ri�r,t�, B�r,t� � �
i

Bi�r,t� . �7�

Note, Eqs. �2� remain valid; the velocity of a single sum
lattice fluid is still defined by the second of Eqs. �2�. As red
and blue fluids mix under the lB propagation step they form
a single mixture or sum fluid described by Eq. �1�, with the
interface dynamics �but not its kinematics� captured in the
microscopic source term �. The interface force �capturing
the effects of interfacial tension� is applied in mixed lattice
regions to the sum fluid. To identify such regions our MCLB
uses a scalar phase field �N�r� as follows:

�N�r,t� � �R�r,t� − B�r,t�
R�r,t� + B�r,t��, − 1 � �N�r� � 1, �8�

inverting which definition we obtain R�r , t�
= 1

2��r , t��1+�N�r , t�� and B�r , t�= 1
2��r , t��1−�N�r , t��. The

mixture is then segregated in a process, which influences the
physical accuracy of the model �5�, as discussed below.

The surface tension inducing interface force F�r� is de-
fined in terms of the gradient of �N�r�. To achieve a cross-
interfacial pressure step proportional only to �K, the local
curvature in the �N field use a fluid body force as follows:

F�r� � − 1
2�K � �N, �9�

with � a surface tension parameter �4,5�; note that curvature

K = nxny� �

�y
nx +

�

�x
ny� − nx

2 �

�y
ny − ny

2 �

�x
nx, �10�

where n̂�− ��N

	��N	 �10�. Our interface algorithm is apparently
based on varying local force in the sum fluid, to eliminate
curvature in the phase field. This device represents interface
dynamics �stress conditions� �4�. But the extent to which the
kinematic condition of mutual impenetrability is implicit is
unclear; forcing the single, sum fluid means the combined
momentum of the mixture of fluids is continuous across an
interfacial region but separate red and blue fluid velocities
may not be easily defined.

Guo et al. have treated spatially varying body forces fol-
lowing Verberg and Ladd �15�; a spatially varying source
term �i�r� is defined in terms of the target macroscopic force
F�r� �11� as follows:

�i�r� � tp�1 −
�

2
��3�ci − u*� + 9�ci · u*�ci� · F�r� , �11�

where our MCLB velocity is redefined as follows:

u* �
1

���i

f ici + �1 − f�
1

2
F�r��, f =

1

2
, �12�

and F�r� is given by Eq. �9�. Note that the quantity f intro-
duced above is discussed shortly. Navier-Stokes equation �4�
now accurately acquires position-dependent body forcing as
follows:

�

�t
�u�

* +
�

�x�

�u�
*u�

* = −
�

�x�

�cs
2�� + 	���

�

�x�

�2�S��
* � + F��r� ,

�13�

and an exact continuity equation. In fact, all other MCLB
models impose an interface through a generalized force, us-
ing a microscopic source �i. For example, the Oxford MCLB
mesoscale model �6� imposes a structured interface appropri-
ate to this length scale by adjusting the pressure tensor of
their MCLB model �3,6�.

By introducing the quantity f in Eq. �12�, it �Eq. �12��
describes both Guo’s model, identified by the source term
equation �11�, the macroscopic momentum equation �13�,

TABLE I. Link weights tp for the D2Q9 lattice.

Link Rest Short Long

	ci	 0 1 
2

tp 4/9 1/9 1/36
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and f =1/2, and what we term the standard model, identified
by the source term equation �9�, the macroscopic momentum
equation �4�, and f =1.

With the convention that a postcollision, prepropagation
quantity is indicated by a dagger superscript, Eq. �1� may be
recast as follows:

f i
†�r,t� = f i�r,t� − ��f i�r,t� − f i

�0���,�u�� + �i�r� . �14�

Postcollision, postsegregation �recolored� quantities are indi-
cated by the use of a double dagger superscript. Accordingly,
we write Latva-Kokko and Rothman’s form of D’Ortona’s
segregation �13,12� as follows:

Ri
†† =

R

R + B
fi

† + �
RB

R + B
tp cos�� f − �i�ci, �15�

in which � f ��i� is the angle of the color field ��N �link� and
Ri

†† denotes the postcollision, postsegregation value of the
red fluid’s momentum density associated with link i. Note
that, for stable continuum interfaces segregation parameter,
�
0.72 �5�.

Equation �66� of Ref. �5� describes the dynamics for the
phase-field scalar �N for any MCLB scheme based upon the
segregation method outlined above which uses a LBGK
model and either the standard method of applying a body
force, or Guo’s more accurate method,

�t��N + � · ���Nu*� = − f � · ��NF� + 1
2cs

2 � · ��N � �� .

�16�

In fact, the order parameter employed in the Oxford MCLB
mesoscale model �6� to define the component �or, more ac-
curately in this case, phase� obeys a broadly similar dynami-
cal equation.

For the standard model �with a direct velocity f =1 in Eq.
�12�� it is possible to obtain for the dynamics of the phase
field �5�,

d

dt
�N = −

1

2�
F · ��N, �17�

which equation clearly deviates significantly from the correct
form required for a continuum fluid, namely �see Sec. III�,

d�N

dt
= 0. �18�

However, with Guo’s more accurate representation of body
forces �with an indirect velocity, f =1/2 in Eq. �12��, the
phase-field dynamics takes a more amenable form. By using
Eqs. �63�, �67�, �68�, and �83� of Ref. �5� directly, it is pos-
sible to obtain

d

dt
�N =

1

2�
� · �cs

2�N � � − �NF� +
1

2�
� · � , �19�

where the components of vector � are given by

�� = �����Nu�
*u�

*� +
1

2
����N�u�

*F� + u�
*F���

+ 2�1 −
1

�
�cs

2����NS��� , �20�

in which the senior term on the right-hand side, the second,
contains phase-field gradients through the interface force
components F�.

In an interfacial region, the principal contribution to any
local pressure gradient may well arise from the interfacial
body force F which, recall, generates the interfacial pressure
step in our model. It is then possible to approximate F
�cs

2� ��� and, accordingly, Eq. �19� approaches much more
closely the target form, given in Eq. �18�, due to a much
smaller right-hand side, which is second order in gradient
quantities as follows:

d�N

dt
=

1

2�
cs

2����N���
��� +
1

2�
������N�u�

*F� + u�
*F��� .

�21�

Note that the quantity 
� excludes the density fluctuation due
to the interface force, i.e., due to interfacial tension.

III. KINEMATIC CONDITION

In a continuum fluid, the interface is subject to a kine-
matic condition �KC�, which effectively requires that it move
at the same speed as the local fluids. For a point in the
interface, identified by a chosen value of �N, to advect in
flow d�N

dt =0. It follows from Eqs. �19� or �21� that the inter-
face is accelerated relative to the local fluid by an amount
determined by pressure and phase-field gradients. The re-
mainder of this paper is concerned with a remedy to this
absence of an intrinsic KC, portable into other MCLB meth-
ods and rather more in accord with the spirit of lB simulation
than earlier attempts based upon a momentum conserving
process of averaging the separated fluids’ velocity in the in-
terfacial region �10�. The latter method is of very limited
value; it is reliant upon arbitrary, computationally expensive
site selection criteria and it compromises interface
resolution.

FIG. 1. Variation of quantities across the interfacial region. In
the figure key, M =1,3 identifies the variation of 
� /K in Eq. �22�
for M =1,3; f denotes f��N� in Eq. �26�. The interface, defined by
�N=0, is centered on x=0 locally.
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Consider a static, spherical red drop, nominal radius r0
=50, suspended in a blue fluid; such a drop is described by a
phase-field variation �N=tanh���r−r0�� for �
0.7 �5�. Fig-
ure 1 shows the variation of the phase field �N in the radial
direction, across the interface �diamonds�; note, abscissa x
=0 is the interface center. Variation of the Laplacian of the
�N field �which, broadly determines the variation of the sec-
ond term in the right-hand side of Eq. �21� and the diver-
gence of F, which is the principal contribution to the right-
hand side of Eq. �19�� is plotted using asterisks. On contour
�N=0 �at x=0� of our particular MCLB’s interface, a KC is
approximately satisfied in both models, with the Guo model
�f =1/2, Eq. �21�� much the superior. In general, however,
the gradients of �N vary and the interface is accelerated most
rapidly for positions 	x	�1, corresponding to 	�N	
0.5. This
is true for all interface radii or curvatures. The region
	�N	
0.5 suggests itself as the interfacial zone onto which
algorithmic extensions designed to promote a KC should be
concentrated.

To promote correlated motion between the internal �red�
and external �blue� fluids at the boundary we seek to elimi-
nate fluid shear in a thin shell 	�N	
0.5, which, from Fig. 1,
is about three lattice units thick. This is accomplished by

increasing the local sum fluid viscosity using a collision pa-
rameter perturbation as follows:


� = − K�1 − �N2�M, 	�N	 � 0.5, K,M � 0, �22�

corresponding in D2Q9 to a local viscosity increase as
follows:


	 =
1

3

K

�2 �1 − �N2�M =
1

3

K�M

�2 	��N	M , �23�

in which we have used a property of interfaces generated by
the formulaic segregation of Eq. �15�, after D’Ortona �12�
and Latva-Kokko et al. �13�, derived in Ref. �5�, namely,

	��N	 = ��1 − �N2� . �24�

The requirement 	�0; 0
�
2 constrains the choice of
K; Fig. 1 plots the variation of 
� for K=1, M =1 �open
squares� and K=1, M =3 �triangles�; for the case of M =3
perturbation 
� is significant only for 	�N	�0.5, which ad-
vantageously limits any penalty on resolution in the interfa-
cial region; with M =3 sites at x= ±2 are unaffected, further
adjustment of M :M �3, M 
10 does not change this obser-
vation but degrades stability. Clearly, the extension in Eq.
�23� generalizes readily to all other MCLB variants �3,7�,
and is easy to apply in three dimensions �3D�.

When considering incompressible liquids, one tradition-
ally factorizes 	��� in Eq. �4�, whereupon any spatial varia-
tion in the latter will generate additional force terms. This
encourages the view of an incompressible, fluid, interfacial
region of variable viscosity, subject to a compensatory forc-
ing, which effectively restores a KC. It is worth remarking
that a variation in kinematic viscosity 	 may characterize a
particular problem, for example, when modeling spatial
variation in fluid temperature within the Boussinesq approxi-
mation. Any such variation should be modeled with 	, posi-
tioned as in Eq. �4�, behind the first spatial differentiation in
the second term in the right-hand side of Eq. �4�.

Consider the case of Guo’s �adjusted velocity� model.
Factorization of 	��� exposes an effective, shear-rate-
dependent forcing in the right-hand side of the lattice Navier-
Stokes equation �13� as follows:
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FIG. 2. Normal velocity un=0 contour super-
imposed over �N=0 contour of a sheared drop at
steady state, with �left� and without �right� the
kinematic condition of Eq. �22� in effect. Note
the departure of the �N=0 and un=0 contours in
the “polar” and “equatorial” regions in the figure
on the right.
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FIG. 3. Absolute value of R, the steady-state residual of the
interface normal velocity un �ordinate�, defined in Eq. �27�, plotted
against M �abscissa� for different values of K; M, K as in collision
parameter perturbation equation �22� for the simulation defined in
the first paragraph of Sec. IV.
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F�� = 2�S��
* �

�x�

	��� = −
2

3

�

�2S��
* �

�x�


� , �25�

in which the last equality uses a substitution for 	��� for the
case of a D2Q9 model. Here strain rate S��

* is based upon
gradients in the corrected velocity of Eq. �12�.

With our proposed � variation of Eq. �22� we obtain from
Eq. �25�, by straightforward use of Eqs. �23� and �24�,

F�� = −
4��

3�2 KMf��N�S��
* f�� , f��N� � �N�1 − �N2� .

�26�

It is not surprising to find an equivalence between an inter-
facial viscosity perturbation, suggested in Eq. �23� and an
effective shear-rate-dependent force. The factor f��N� defined
above, varies across the interfacial region as illustrated in
Fig. 1.

IV. RESULTS AND DISCUSSION

Figures 2 and 3 all derive from data obtained from drops
of initial radius 15 lattice units, with surface tension param-
eter �=7.0�10−3. For the the data of Fig. 2 the drop was
exposed to an unperturbed shear rate 1.0�10−4 in lattice
units, on a lattice of size 150�50 lattice units; the unper-
turbed collision parameter �=1.0 and the perturbation 
�
�Eq. 2� was characterized by K=0.5, M =2. For Fig. 3, the
same lattice with rest boundaries was used, with a range of
viscosity perturbations �see the figure key and caption�.

Consider a neutrally buoyant �red� drop embedded in a
symmetrical sheared �blue� fluid of identical kinematic vis-
cosity. At the steady state, in the rest frame of the drop in-
terface deformation ceases and the normal component of
fluid velocity, un, vanishes �this is untrue of the correspond-
ing tangential component, which is nonzero in general�. On
noting that the chosen interface center, the contour �N=0
cannot intersect any lattice node, we suggest that the best
illustration of the subgrid nature of the KC and the benefits
attending its use is the correlation between the contour �N

=0 and the contour un=0. Compare now the results in Fig. 2.
On the right of this figure is shown details of the flow in the
region of the drop pole; the un=0 contour is superposed over
the �closed� contour �N, for a drop without a KC inducing

perturbation in force; the figure inset shows the whole drop.
On the left of Fig. 2 is the corresponding simulation with a
KC, characterized by K=1, M =3 applied. In the latter, the
un=0 contour is located much closer to the center of the
interface, especially in the polar region, where ut, the com-
ponent of fluid velocity tangent to the �N=0, was also much
smaller.

Briefly consider the effective, shear dependent force F� of
Eq. �25� at the “North Pole” of the drop depicted in Fig. 2.
The shear rate at the drop North Pole is dominated by a
contribution

�vx

�x �0; this, and the variation of the the factor
f��N� imply Fx�
0 �Fx��0� for the blue �red� side of the
interface, in accord with a reduction of the local shear gra-
dient when �N=0.

In Fig. 3 we consider the correlation of the zero of normal
velocity with the �N=0 contour. The ordinate corresponds to
a steady-state residual of the modulus of the normal velocity
as follows:

R = �
�N=0

	un	 , �27�

the abscissa to the value of parameter M in Eq. �22�.
Branches of the plot with increasing ordinal intercept corre-
spond to amplitude parameter

K = 1.00,0.75,0.50,0.25,0.12,0.012

in Eq. �22�. Our simulations show that the correlation im-
prove at a diminishing rate as M increases; while our simu-
lations were stable, as M increases, larger shear rates may
cause instability.

The segregation method outlined in this paper together
with a kinematic condition facilitate robust MCLB simula-
tions in the continuum approximation with advantages of
increased efficiency, negligible interfacial microcurrent ac-
tivity, and drop pinning �13,5� �facilitating low capillary and
drop Reynolds number �5� applications�, improved represen-
tation of continuum hydrodynamic boundary conditions �Fig.
2� and, not least, simplicity. Moreover, the simple rule ex-
pressed in Eq. �22� transplants into other MCLB methods
�6,7� directly, to facilitate their application to the continuum
regime.
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